class AutoPlotter extends AnyRef
The auto plotter contains methods for uploading a csv data and create a dashboard from its frame.
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- AutoPlotter
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
- new AutoPlotter(facades: FacadeScope)(snapshot: SourceSnapshotInfo)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- val _features: String
- val _indexed: String
- def approxCountDistinct(column: SourceDataDescriptionColumn): Long
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- def calculateCorrelationAgainstTarget(df: DataFrame, dataDescription: List[SourceDataDescriptionColumn], targetCol: String, top: Int): List[String]
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
- val columns: List[ColumnType]
- val columnsCategorical: List[Categorical]
- def continuesPlot(col: String, targetCol: String): DashboardDisplay
- val countCategorical: Int
- val countNumerical: Int
- val countPlotAble: Int
- val countRows: Long
- val countTimeLike: Int
- def createDashboard(targetCol: String): DashboardContent
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def findLinearPlots(column: String): List[DashboardDisplay]
- val frame: DataFrame
- def frequencyPlot(col: String, targetCol: String): DashboardDisplay
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def isNumericalColumnIsCategorical[T](column: String)(implicit arg0: Numeric[T]): Boolean
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def newId(): String
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def numericColumnIsCategorical(column: SourceDataDescriptionColumn): Boolean
- def orderCategoricalByImportance(categorical: List[Categorical], targetCol: String, top: Int): List[String]
- val source: SourceContent
- val sourceDataDescriptionColumns: List[SourceDataDescriptionColumn]
- def stringColumnHasFewerThanXUniques(frame: DataFrame, column: String, x: Int): Boolean
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
- def wordCloud(columns: List[String]): DashboardDisplay
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated